
Why complex application
development projects fail

- and six tips to help you succeed

The number of IT project failures is astonishing.
1/3 of all application implementation projects run
late or over budget *.

And Yet, IT had never been more important than
it is in today’s dynamic digital era.

So, why is it that so many application development
projects are put on the rails – often to be paused
later – or deliver disappointing outcomes?

Is there a way to beat those odds? There certainly
is. In this e-book, you will find six tips to help you
keep your complex application development
project on time and on budget while ensuring
that it meets the needs of everyone involved.

1/3
of all application
implementation projects
run late or over budget

* Source: Use These 10 Contracting Steps to Dramatically Reduce Your Application Implementation Project Overruns (Gartner, 2017)

1. Why do complex it projects fail?
p. 5
-

2. Six tips to ensure application development success
p. 7
-

Tip 1: know your users and the business drivers
p. 7
-

Tip 2: take it one step at a time
p. 8
-

Tip 3: keep cost top of mind
p. 10
-

Tip 4: develop software like a pro
p. 11
-

Tip 5: test, test and test again
p. 14
-

Tip 6: collaborate and communicate nonstop
p. 15
-

3. In conclusion
p. 16
-

TABLE OF CONTENTS

1
Why do complex it
projects fail?

5

Large-scale, complex application

development projects are more prone

to go wrong by their very nature:

they take several years to complete,

which means that the requirements

and scope are likely to change over

time. Even more, they involve a lot of

people – some of whom may come

and go. That makes it harder to retain

the same focus, ensure a consistent

approach and be successful.

Why do complex it projects fail?

IT project failure can take many different shapes and

forms, from exceeding deadlines and running out

of funds to falling short of user expectations. The

factors that put IT projects at risk of failure include:

•	 poor initial scope definition;

•	 shifting priorities and scope;

•	 lack of focus on the budget;

•	 poor technical expertise or inadequate software

development techniques.

Read on to discover six tips to ensure application

development success.

Six tips
to ensure application
development success

2

7

 Six tips to ensure
application development success

 Tip 1: know your users and
 the business drivers

One of the biggest factors that puts software

development at risk of failure has nothing to do

with technology. It’s failing to clearly understand the

user and the business needs behind the initiative.

An in-depth analysis will help you understand the

business drivers and goals of the project to ensure

you get your project scope right.

Your users need software tailored to their specific

business needs and goals. So, no matter how great

your application looks and how well every function

works, it won’t be successful if it doesn’t do what the

users expect it to do.

That’s why successful IT projects start with a

thorough analysis. This means asking questions, not

only about the application needed, but also about

the vision, strategy, way of working and the future

plans of the company and/or team. By getting to

know your users and the business context really

well, you’ll be able to exactly identify the business

drivers and, as such, the solution the users need

– and take that into account at every step of the

software development process.

No matter how great it looks
and how well it works, your
application will fail if it doesn’t
do what users expect it to do.

TIP 1

Take time to analyze business and user

needs and be patient if your application

development partner keeps asking

questions. A thorough business analysis

at the beginning of a project is the best

way to ensure success at the end!

ORGANIZE WORKSHOPS TO IDENTIFY

THE TRUE BUSINESS DRIVERS

What exactly is the scope of a new IT

project? Does every stakeholder agree

on its objectives and the requirements?

To make sure that everybody is heading

in the right direction, a thorough pre-
analysis is key.

Organize a series of workshops
with the business to understand the

organization and learn what challenges

they want to solve, talking to as many

stakeholders as possible. Based on

that input, you can then determine and

visualize the business drivers (goal,

actors, impact and deliverables) and the

high-level project scope (application

context, business processes, conceptual

model and story mapping). Gauge

the feedback on your proposal during

another workshop. Last but not least,

you’ll need to identify the technology
needs, including functional as well as

non-functional requirements, risks and
budget – again, in close cooperation

with every stakeholder.

8

 Tip 2: take it one step at a time

No matter how meticulously you’ve identified your

initial scope, requirements and priorities will change

in the course of an application development project.

By working iteratively and holding regular feedback

sessions, you’ll stay on top of user needs and

respond to change quickly and efficiently.

In software development, change is the only

constant. New legislation, a new CEO, changing

customer demands: plenty of factors can impact

the scope and priorities of your project. The ability

to adapt to that change – and communicate about it

– is key to the success of your development project.

Current software development approaches, such as

agile and DevSecOps methodologies, help teams

respond to changing circumstances and trigger

constant feedback. By developing the application in

small incremental steps with short feedback loops

between development and either the business

(agile) or operations (DevSecOps), you’ll spot

inconsistencies or issues quickly and can adapt on

the fly, solving them before you move on to the next

chunk.

In addition, it makes sense to schedule high-

risk development early on in the project’s life

cycle. After all, it is easier to identify an alternative

approach in the beginning than at later stages.

AGILE AND DEVSECOPS:

WHAT’S IN A NAME?

Both Agile and DevSecOps aim to

promote collaboration and teamwork

and accelerate delivery. Both

approaches, however, address different

aspects of the delivery process:

•	 Agile encourages short feedback

loops between the development

teams and the business. Agile tech-

niques allow for the quick evaluation

and adaptation of the application

under construction to make sure

it meets business – and, as such,

end-user – requirements.

•	 DevSecOps promotes better col-

laboration between development,

operations and security teams. It

focuses primarily on the frequency

of the deliveries, pushing past di-

visional silos to enable rapid inte-

gration, testing and deployment of

software changes to a production

environment – in order to improve

planning, design and release pro-

cesses.

9

TIP 2

Develop the application step by step

(incrementally) and get rapid feedback so

that you can change course when needed

– without big negative impacts.

PROOFPOINT: THE VENTOURIS CASE

“As there is a new release of the Ventouris

e-platform every two weeks, we have

the flexibility to quickly implement

changes. More importantly, every

release requires minimal testing. If you

have one big update every four months,

you need a huge user base to test

whether there is software regression. By

constantly releasing small updates and

implementing minor features, testing is

minimal and we can assure users that

there is no software regression.”

Johan Lybaert, vice president of Social &
Government at Cegeka

“As there is a new release
of the Ventouris e-platform
every two weeks, we have the
flexibility needed to quickly
implement changes.”

10

 Tip 3: keep cost top of mind

1/3* of complex software projects exceed their

budgets. That’s not really surprising, as budgets

are set before the project kicks off, when there are

still a lot of uncertainties. Moreover, the scope of

your project is bound to change overtime. To avoid

budget overruns, you’ll have to keep costs top of

mind at every step – from scope definition to project

delivery.

Defining a clear project scope that accurately takes

into account the project requirements is, of course,

a must to set the budget right and, consequently,

to avoid the risk of running out of funds. Prepare

for surprises when you estimate your costs, as

large projects typically come with unforeseen

circumstances that impact your budget.

When kicking off your project, think big, but start

small. Keep the project requirements in mind and

build a minimal viable product first that focuses on

the must-haves, i.e. the features that the business

needs the most and that will add real business value.

Nice-to-haves can then be added at a later stage, if

you still have budget available.

To be able to stick to your budget, you have to

keep track of it and communicate about it with

everyone involved, at all times. Iterative, step-by-

step development and regular feedback sessions

are a big help in this. During biweekly meetings, for

example, you can review not only the application

and its progress, but also the actual spend versus

budget and reset priorities if needed to prevent

things from getting too far out of hand.

TIP 3

Think big but start small’ should be the

adage when developing an application:

focus on the must-haves and only add

nice-to-haves when you’re sure you have

enough funding left.

Prepare for surprises when
you estimate your costs,
as large projects typically
come with unforeseen
circumstances that impact
your budget.

* Source: Use These 10 Contracting Steps to Dramatically Reduce Your

Application Implementation Project Overruns (Gartner, 2017)

11

 Tip 4: develop software like a pro

Elaborate IT projects that involve large applications

are complex and, consequently, more prone to

failure due to technical issues. That’s why they require

clear software architecture, hands-on development

methodologies and software engineering best

practices that every developer strictly adheres to.

Smart software development starts with the

creation of the right software development team:

a group of dedicated experts capable of achieving

the objectives of the project and that understand

the project’s vision, goals and timeline.

Successful software developers write clean, reusable

code that is easy to test and read. There is a wide

range of best practices that contribute to building

high-quality, low-complexity code. If the entire

software development team follows a consistent

approach to design and coding standards, code

will be easy to share among colleagues – and their

future colleagues – to ensure the continuity of your

project. Moreover, this software craftsmanship leads

to built-in quality and first-time-right applications

and software projects.

Last but not least, make sure your software engineers

are constantly learning about new trends and

technology – including new languages, frameworks,

methodologies, etc. – and that they are not afraid to

apply their learnings directly to their work.

A SELECTION OF SOFTWARE

DEVELOPMENT BEST PRACTICES

Every best practice is important for

building high-quality, future-proof

software. In practice, however, software

teams often choose which best practices

to use according to the context and

needs of each project. Examples include:

Readable code
Readable code is key to ensure high-

quality software. Developers have to

write code that is easily understood by

colleagues on the team and will be self-

explanatory for those maintaining the

code in the future.

Pair programming
To avoid quality issues, you can

have two developers work together

simultaneously on a task, one in the

role of the ‘driver’ and the other as

the ‘navigator’. The driver types the

code while explaining what they are

doing and why. The navigator thinks

ahead to the next steps and potential

pitfalls, anticipating issues before they

occur. By combining their experience,

the developers often come up with

solutions that might not have occurred

to them alone.

12

Collective code ownership
Collective code ownership means that

the code belongs to the whole team.

That means that any developer can edit

any piece of code and start working on

the next iteration. In addition, people

are encouraged and expected to make

any changes in the code needed.

Domain-driven design
If the words used in the software do

not precisely match those used by

the business, it can lead to all kinds

of problems. Domain-driven design

connects the implementation to a

model of the domain the software will

be used in, using a language that is

shared by the team and the customer/

users.

Refactoring
Continued effort to keep the internal

code structure clean and in line with the

evolving architecture and frameworks

helps avoid costly reworks at later

stages of the project.

THREE KEYS TO KEEPING YOUR

SOFTWARE DEVELOPERS MOTIVATED

More than ensuring that your

development team has great

development skills, how can you keep

them engaged, satisfied and productive?

Three keys to keeping developers happy

(spoiler alert: an outrageous salary isn’t

one of them):

1. Give them a purpose
Employees – especially millennials –

increasingly look for jobs that are useful

to society or that give them the chance

to help others. So, if you want to bring

out the best in your people, give them

purpose.

2. Ensure access to the latest
technologies
Software engineers generally enjoy

trying out the newest innovations. Let

them use the latest and greatest tools

and test new technology. Even more,

make sure that developers who update

or maintain existing applications can

combine that with exciting new projects.

3. Provide ample opportunities to
learn and grow

Tech workers are always yearning for

opportunities to grow and advance.

Satisfy that desire and challenge them

to prove themselves on a bigger and

bigger scale.

13

TIP 4

Make sure your entire software

development team adheres to best

practices and follows a consistent

approach to design and coding standards.

That’s simply a must to ensure the quality

and continuity of complex application

development projects.

“Investing in continuous
training and keeping the
in-house knowledge up to
date is a priority at Cegeka.
Challenging work is the key to
maintaining the engagement
of our people.”

PROOFPOINT: THE VENTOURIS CASE
“We continue to add young talent to the

40-person Ventouris team. Investing

in continuous training and keeping in-

house knowledge up to date is a priority

at Cegeka. Challenging work is the key

to maintaining their engagement. Our

way of working ensures that the people

on the team develop state-of-the-art

software even after 20 years, and at the

same time, we offer the best quality to

our clients.”

Natalie Vanderhasselt, sales manager at Cegeka

14

PROOFPOINT: THE VENTOURIS CASE

“Automated testing ensures a high

quality standard and offers us the

flexibility needed to release a new

version on a biweekly basis.”

Johan Lybaert, Vice President
Social Impact Division at Cegeka

 Tip 5: test, test and test again

While software engineering best practices are a great

start to developing high-quality software, properly

managed testing is just as important. Consistent,

repeatable and automated tests will help you detect

bugs from the early stages of development onwards

to prevent your application from failing once it’s up

and running.

Over the past few years, there’s been a lot of buzz

around the use of automatic testing as a way to

speed up the software development process – and

rightly so. However, the best way to ensure complex

applications of the highest quality is to combine

manual and automated testing – as both have their

pros and cons.

When determining the design or the usability of your

application, for example, human insight is critical.

Hence, manual testing – by developers as well as

users – is your best option. PEN testing, for example,

requires human creativity to assess whether your

applications and infrastructure meet the security

standards needed to protect them against outside

threats. Automated tests, for their part, are ideal for

testing large applications with many variables and

many platforms, and useful when tests have to be

quick and accurate. They can be used to verify if an

application still works correctly and if non-functional

 .tem era ,sdeen ecnamrofrep sa hcus ,stnemeriuqer

TIP 5

Testing automation is definitely worth the

investment, especially in large application

development projects. Although building

and maintaining an automated test suite

does take time up front, it is sure to save

time later on.

Automation is ideal when
tests have to be quick and
accurate and for testing
large applications with
many variables and many
platforms.

15

 Tip 6: collaborate and communicate
 nonstop

If there is one golden tip in our series, it’s this one:

never forget the human factor!

We’ve highlighted it throughout this e-book:

communication is king. Talk to the business

and the users and question them extensively to

determine your scope. Ask for their feedback on

a regular basis to make sure you stay on track,

avoid misunderstandings and can swiftly adapt

your application whenever needed without losing

too much time. Talk openly about the budget.

Collaborate closely with peer developers and the

business to develop high-quality software and test

it.

TIP 6

Software projects are about people.

Strong collaboration and communication

may mean the difference between project

failure and success.

An IT project is doomed
to fail if collaboration and
communication fall short.

Large, complex software development projects are

not doomed to fail by definition. There are sure ways

to avoid crashing and burning. If you take our six tips

into account, you’re well on your way to success:

1. know your customers

2. take it one step at a time

3. keep costs top of mind

4. develop software like a pro

5. test, test and test again

6. collaborate and communicate nonstop

Looking for more tips to make your large, complex

application development project a success? Are

you looking for a partner that has proven its worth

in countless complex IT projects, or interested in

seeing the Cegeka team in action?

In conclusion

PROOFPOINT: THE VENTOURIS CASE

“There are not that many firms with the

same level of discipline when it comes

to software best practices. All this leads

to high-quality software that is still up to

date today. For Ventouris, we can count

the number of bugs we’re fixing on two

hands at any given time. Since we started

building Ventouris over 15 years ago, we

have never had any serious incidents.

Moreover, the speed and functionality

have never been questioned by users.

These are quality parameters that prove

the Ventouris platform’s reliability.”

Natalie Vanderhasselt,
Sales Manager at Cegeka

Check out full-blown
Ventouris Story
> www.cegeka.com/ventouris

WWW.CEGEKA.COM

