
? ?

Agile Software
How to build in quality from the start

In a world where everything is enhanced by software,

clean code is one of the fastest ways we provide business

value to our customers. We create modular software

that is easy to build on and delivers value quickly.

Of course, clean code does not write itself. It requires

hard work by skilled people. We have over 700 people

in our company and over the last 10 years we have

adopted and adapted many agile software engineering

best practices. Following the lean principle of reducing

waste, we build quality into the development process.

Figure 1 shows end users and the development team

working together and applying a number of best

practices.In this paper we explain these best practices,

which all contribute to producing clean code, i.e.

optimal code quality. We share best practices for both

programming and testing. In theory, they are all more

or less equally important for building high-quality

future-proof soft-ware. But in practice, we choose

which best practices to use according to the context

and needs of each project.

Happy reading.

Quality assurance practices are designed
to prevent quality issues from coming up
at all. These practices, which can be split
into programming practices and testing
practices, are listed in Figure 1.

Figure 1. Mind map of quality assurance

QUALITY ASSURANCE PRACTICES

TEST

TESTING PRACTICESPROGRAMMING PRACTICES

Pair programming Acceptance testing

Unit testing

User Interface testing

Performance & scalability
testing

Security testing

Collective code ownership Exploratory testing

Integration testing

Sanity checks

Test-driven development

Behaviour-driven
development

Domain-driven design

Customer collaboration

Continuous build &
integration

Constant feedback

Automation

Incremental design

Refactoring

Minimise time
between stages

Quality constraints Managing trade-offs Continuous improvement

ABD
ABC

Quality assurance
best practices

1. Programming practices
p. 6
-

2. Testing practices
p. 20
-

3. Make it happen
p. 24

CONTENTS

1.
Programming

practices

7

This component of Extreme Programming
aims to avoid quality issues by having two
developers working together simultaneously
on a task, one in the role of ‘driver’ and the
other as the ‘navigator’. The driver types the
code while explaining what he or she is doing
and why. The navigator thinks ahead to the
next steps and potential pitfalls, anticipating
issues before they occur. The result is better
quality code. The driver and navigator switch
roles every 15 minutes, so this method is also
known as ping pong programming.

By combining their experience, the develo-
pers often come up with solutions that might
not have occurred to them alone. This often
leads to better productivity. Additionally, this
technique guarantees knowledge transfer as

Pair
Programming

best practices and coding standards are shared
more widely among the team. Not only does
this result in more readable code, but it also
contributes positively to employee satisfaction.

The team decides when to work in pairs. If
code is developed by just one person, a code
review is obligatory before a user story can be
considered complete.

0110101011101
0110101010110
1010101011101

 Pair programming:
Two minds are
better than one

8

COLLECTIVE CODE OWNERSHIP

This practice means that any developer can edit
any piece of code. So no one owns the code in
an agile project – it belongs to the whole team.
Anyone can start working on the next user
story of the iteration. In addition, people are
encouraged and expected to make any chang-
es in the code needed to complete the work
that the team is doing. Readable code is key to
collective code ownership. So developers have
to write code that is easily understood by col-
leagues on the team and will be self-explana-
tory to those maintaining the code in the future.

Collective code ownership is easier when the
team follows a consistent approach to design
and coding standards. So the team needs to
establish a house style that everyone agrees to
follow. A consistent style will ensure that their
code is more readable and that less time is
wasted on reformatting code to personal taste.
Moreover, having a stable team with few staff
changes will contribute positively to this prac-
tice.

In this environment, there are no ‘heroes’ – in-
dividuals who position themselves as critical
resources by being the only ones who know
the code, and then have to come in at week-
ends or during holidays if problems occur. By
implementing their quick-fix solutions, howev-
er, they can end up creating new problems for
themselves. Collective code ownership makes
this unnecessary.

TEST-DRIVEN DEVELOPMENT (TDD)

This component of Extreme Programming aims
to avoid quality issues by writing tests before
writing code. Basically, the analyst writes down
the test conditions for each feature just before
it is developed. If the developers know how the
code is going to be tested, they are much more
likely to write code that meets all the require-
ments.

In our Software Factory, it is a best practice to
write automated unit tests for each of the test
conditions before actually writing the code.
The developer then writes the code needed to
pass the tests. TDD is also useful for regression
testing after software maintenance, because
it simplifies the process of checking whether
changes to the code during maintenance have
any negative effect on the software.

Since TDD means building only what is need-
ed and testing that it works, it leads to a much
easier code base to maintain and modify. With
less code comes less complexity, and this sim-
pler design means that changes and modifi-
cations become much easier. Another positive
result is that the documentation is an inherent
part of the code, so it is always up to date.

TEST

9

BEHAVIOUR-DRIVEN DEVELOPMENT (BDD)

Behaviour-driven development means that
customer specifications are used as input for
the development. The specifications are written
in the language of the customer and describe
the behaviour the customer expects from the
application. While developing the functional-
ity, the developers will turn these specifications
into automated tests, by linking the test in the
language of the customer to the code, using
tools like JBehave.

The difference between the unit tests (written
using test-driven development) and automat-
ed integration tests and these behaviour-driven
development tests, is that the first two focus on
the code, while behaviour-driven development
tests focus on the behaviour the customer

expects from the code. Through regular execu-
tion of these tests, building them in in the con-
tinuous integration and deployment process,
we now cannot only assess that the code is
clean and unbroken (unit and integration tests),
but also that it does what the customer expects
it to do. Since these tests are written in the lan-
guage of the customer they also offer a living
documentation of the intended behavior of the
system, that is constantly tested.

USER STORY

User stories describe in one sentence, in the
customer’s terminology, a small piece of func-
tionality used to incrementally build the appli-
cation. It represents business value, as it cap-
tures what a user does or needs to do as part
of his/her job.

The user story is not a form of document-
ing business requirements, but more a way

to promote having a discussion amongst
team members who will actually work on the
story, together with the business, who needs
the outcome of the story.

It is essential that the user story precisely
defines the objective of the code and has the
following characteristics:

Independent
it is important that teams can develop,
test and deliver the user story on its own
and that it can be valued independently.

Estimable
each story contains enough information
to be estimated by the developers. If the
story is too uncertain to estimate, a spike
can be used to reduce the uncertainty and
produce user stories that are estimable.

Small
a user story can be implemented
in 1 iteration.

Valuable
each story represents business value and
provides end-to-end functionality (slicing
through all layers of the architecture).

Testable
acceptance criteria and a test design are
agreed for the user story to minimise
interpretation problems and to use for
confirmation that the software is working.

Negotiable
the user story is not a contract for fea-
tures, but rather a placeholder for require-
ments to be discussed, developed, tested
and accepted, negotiable between the
business and the team.

DOMAIN-DRIVEN DESIGN (DDD)

This is an approach to software development
for complex requirements that connects the
implementation to a model of the domain the
software will be used in, using a language that
is shared by the team and the customer/users.
If the words used in the software do not pre-
cisely match those used by the business, it can
lead to all kinds of problems. In agile develop-
ment, it is the developer’s job to speak the lan-
guage of the user, not the user’s job to speak
the technical language.

INCREMENTAL DESIGN

This simply involves taking time to improve
the design of the software in small steps as
you go along. Design improvement becomes
part of every developer’s day, so that it is ap-
plied to every user story and not left for later.
By working in this way, developers think about
the design of the software as they write tests,
as they implement the code to pass these tests,
and before they check in their code. When de-
velopers create a design for their current user
story, they bear in mind upcoming user stories
in their design decisions. In addition, reworking
a design often improves it. Each time the de-
sign is reworked, it becomes more refined and
malleable.

Making the shift from standard design to in-
cremental design right from the start can be a
big challenge. In practice, limited time is spent
on thinking about design without producing
working software. Developers prove their ideas
by implementing them, designing for current
needs and keeping their design as simple as
possible.

ABD
ABC

10

11

REFACTORING

This is a method to systematically improve
the structure of the code without impacting
its external behaviour. It involves placing the
code in the right place where other develop-
ers can find it quickly and easily, and keeping
the code organised and decluttered. Refac-
toring also means using well-named methods
and variables that improve the readability and
maintainability of the code base. This is crucial
for reducing ‘technical debt’. Comparable to
real-life debt, technical debt often has to be
paid to rectify faults from the past in order to
make progress again (e.g. code that was bad-
ly designed). However, if the debt is not con-
trolled, it can become one of the project’s big-
gest risks and significantly reduce productivity.
You can compare it to a car mechanic who
never cleans the floor after spilling oil. If this
goes on for years, they can try scrubbing the
floor as much as they like, but they will never
get the floor clean. It would have been better
to have given the floor a quick wipe every day.

Refactoring does not involve the aesthetic
organisation of the code; it is basic house-
keeping. Importantly, refactoring should not
affect the proper functioning of the code. As
a result, refactoring requires excellent test
coverage, and it is inextricably linked to
test-driven development. Refactoring is done
continuously throughout the day, with small
steps and improvements. The team is allowed
to refactor anywhere in the code base: devel-
opers rename methods and variables to make
the code base easier to read and understand.

Major refactoring is rare and addressed in a
separate technical story that, like any other
user story, needs to be estimated and priori-
tised. Aggressive refactoring near the end of a
project does not slow you down, it speeds you
up. Adding new code and fixing bugs results
in better, faster and cheaper software in the
long run. It keeps the change capacity of the
application high, which means that even older
applications can be kept operational without
exposing the business to risk.

CUSTOMER COLLABORATION

Close involvement of the customer – the
business side as well as the IT side – creates
the dialogue needed to define requirements
correctly and to clear up possible misunder-
standings immediately. A collaborative team
also verifies that the implementation is correct
through the use of exploratory and accep-
tance testing. In this process, it is important
to focus on the features that business needs
most, based on its vision, with the function-
ality reflecting the biggest value for the users.
If users see the added value of the software,
it usually minimises the functional assistance
they require.

Customer collaboration requires in-depth
knowledge of the process, with a custom-
er committed to the project. The customer’s
validation team should visit the development
team frequently, especially during testing. This
will give them the opportunity to explain how
the customer’s needs fit into the bigger pic-
ture and also lead to better informed deci-
sions by the development teams. It is a good
practice for the validation team to present this
information visually, using information panels,
posters, whiteboards, etc.

12

13

PRODUCT BACKLOG SPRINT BACKLOG DEPLOYABLE PRODUCT

2-weekly
Iteration

1 day

Figure 2. Customer collaboration - Deep involvement of the customer ensures definition of the right requirements

Customer needs

Product vision

Team vision

Portfolio vision
(investment themes)

(high-level goals and plans)

(high-level analysis
and design)

po
rt

fo
lio

ba

ck
lo

g
pr

og
ra

m

ba
ck

lo
g

pr
od

uc
t

ba
ck

lo
g

sp
ri

nt
 b

ac
kl

og
Iterations

Release plan

< key date and cost >
< features fit in release >

Release plan

< key date and cost >
< features fit in release >

IterationsRE
LE

A
SE

RE
LE

A
SE

ST
RA

TE
G

IC

LE
V

EL
PR

O
G

RA
M

LE

V
EL

TE
A

M

LE
V

EL

CONSTANT FEEDBACK

Both Scrum and Extreme Programming build
quality into the process by developing in small
incremental steps and using short iterations.
These agile methods allow the customer and
the team to work together closely with con-
stant two-way feedback between them. This
feedback can considerably enhance the qual-
ity of the code, because it means the devel-
opers inspect and adapt the product every
single day to ensure the right level of quality,
and more importantly, the right product.

Feedback also makes it possible to set
priorities, if necessary by comparing the
cost consequences of a reported bug with
the cost of fixing it. The practices of Extreme
Programming and Scrum are completely
complementary, so development teams can
choose to use both.

CODE

PAIR PROGRAMMING

UNIT
TEST

ACCEPTANCE
TEST

ITERATION PLAN

RELEASE
PLAN

Months

Weeks

Days

One day

Hours

Minutes

Seconds

PAIR
NEGOTIATION

STAND UP
MEETING

Figure 3. Planning/feedback loops: constant feedback at different levels helps to build in quality.

14

15

MINIMISE TIME BETWEEN STAGES

This important technique for building quali-
ty into the development process reduces the
time between development, testing and bug
fixing to a minimum. Instead of logging bugs,
developers resolve them immediately. In most
cases, logging bugs is a waste of time. Testing
the code as soon as it is developed and fix-
ing bugs as soon as they are found eliminate
the need to log them. Moreover, a long period
between writing the code, testing it and fixing
bugs disrupts continuity and results in delays
due to task switching, knowledge gaps and a
lack of focus.

A useful tool here is our ‘definition of done’
– a list of requirements that should be met
before a user story is considered complete –
which allows the team to do a final check in-
dependently of each other.

There is a positive correlation between high
speed for resolving defects and the quality of
the software.

PRODUCT BACKLOG SPRINT BACKLOG DEPLOYABLE PRODUCT

Analysis
Test
Design
Code
Anything else

1 day

TEST

Figure 4. Perfect timing: minimising the time between development, testing and bug fixing results in better quality software.

16

17

CONTINUOUS BUILD AND INTEGRATION

Most agile methods recommend doing reg-
ular and frequent builds, at least daily if not
hourly: “Integrate often and fail fast!” Extreme
Programming recommends continuous inte-
gration, with code built and automatically unit
tested as soon as it is checked-in and then in-
tegrated into the overall system. Reducing the
gap between builds to a minimum also cuts
down the time spent on integration. On major
waterfall projects, the integration and regres-
sion testing phases can be very long. This prob-
lem can be avoided by regular builds and fre-
quent integration.

We use build scripts that integrate the new
code with the existing one to form a working
whole. This happens before the code is com-
mitted to the version control system, so that
problems (in the new code itself, or between
the new code and external components) are
quickly identified and resolved. The teams use
a source code repository and behave as if they
are in production from day one of the project.

Developers establish a check-in process and
integrate code in small chunks multiple times
a day. Continuously integrating the changes
committed by developers throughout the day
can make the whole process of building, inte-
grating and deploying software fast and easy.
Not only does continuous integration of code
squash bugs earlier, but it also cuts the cost of
changes and leads to confident deployment.

Moreover, the more automation, the better.

AUTOMATION

The teams use an automated build system and
developers always fix a broken build immedi-
ately. In addition, automated regression testing
can be used to reduce the work involved in de-

tecting quality issues before they occur in a live
environment. Where applicable, all repetitive
tasks should be automated as much as possi-
ble, so reducing the risk of human error.

QUALITY CONSTRAINTS

Non-functional requirements are also de-
scribed in the form of user stories if possible,
for example in the field of usability (“As a user,
I want to be able to navigate through a form
with the tab key”), performance (“As a user, I
want an answer within x seconds of submitting
a form”), scalability (“As a system, I can support
100 concurrent users without impacting re-
sponse times”), etc. Such requirements are also
called quality constraints, because they define
the limits of the functionality implemented.

An important rule is that constraints should be
incorporated after a user story is completed
in an iteration. For example, consider the re-
quirement about submitting a form and want-
ing an answer in 0.2 seconds. The performance
of the form may not be a priority during the
initial iterations, but after running this quality

constraint all subsequent forms should react
within 0.2 seconds. The mechanisms necessary
to validate this performance should also be es-
tablished (e.g. automated performance tests).

Some quality attributes are so obvious and in-
herent in our software engineering practices
and ways of working that we want to respect
them at all times. Examples include test cov-
erage, clean code and design practices. These
quality constraints are respected from the very
first user story onwards and form an integral
part of our definition of done: the constraints
have to be met before a user story is consid-
ered complete. Certain architectural agree-
ments made with the customer can also be
treated in this way, for example naming con-
ventions, service orientation, etc.

MANAGING TRADE-OFFS

Bear in mind that quality is only one aspect of
a project – time, cost and scope should also be
taken into account. Sometimes there are com-
mercial reasons to trade off quality against other
factors.

There may also be situations where focusing on
quality costs more than the issues the develop-
ers want to avoid. An example of agile methods
recognising a trade-off in theory is the accep-
tance of reworking (refactoring) due to not hav-
ing detailed specifications and a complete de-
sign right at the start of a project. In traditional

methodologies, detailed functional and technical
analyses were designed to improve quality early
in the project life cycle. But over the years, many
people discovered they were counterproductive
– and so agile methods were born.

Likewise, if developers are building fairly low-com-
plexity visual features that have a limited impact,
it may be better to spend less time on quality as-
surance, because the risk of quality issues coming
up is low and even if they did, their effect would
be small. Of course, this is a judgement call and it
may be difficult to know where to draw the line.

18

19

$

4x

2x

1.25x

0.8x

0.5x

0.25x

Es
ti

m
at

io
n

vs
 V

ar
ia

bi
lit

y

time

Done

Construction

Elaboration

Make them down here once you’ve
had a chance to firm things up

Don’t make promises you can’t keep up here

Inception

Figure 5. Reality check: the accuracy of estimates can depend on the stage of the project.

In order to work on the right features at the
right time, the team should prioritise the prod-
uct backlog. This will help them to focus on the
features that the business needs the most. The
best approach is for the team to work according
to a fixed time and materials budget, as this will
give them the flexibility to react smoothly to any
priorities set by the customer.

When setting priorities, you can minimise risk by
planning to do complex user stories with techni-
cal uncertainty at the beginning of a project.

CONTINUOUS IMPROVEMENT

Retrospectives (feedback, inspect and adapt) –
after the sprint, demos, code reviews, extensive
testing, mature project management method-
ology, active coaching and so on – help people
to continuously improve their ways of working,
within and across the teams. Apart from spe-
cific projects, we offer a number of ways to help
our people gain new insights and to expand their
knowledge, including internal knowledge ses-
sions, regular training, reading groups, compe-
tence centres, etc.

2.
Testing

practices

Besides quality assurance practices, we perform a number of systematic tests to detect possible bugs
at a very early stage of development.

PRODUCT BACKLOG

MANUAL
TESTING

AUTOMATED
TESTING

Test design &
acceptance

criteria

Sanity
check

Exploratory
testing

Proxy
check

Unit
tests

UI
tests

Security
tests

Performance &
scalability tests

Integration
tests

Manual
testing

Demo

SPRINT BACKLOG DEPLOYABLE
PRODUCT

Iteration

1 day

User
acceptance

tests

RE
LE

A
SE

21

ACCEPTANCE TESTING

Each user story is based on a number of objective criteria that can be used
to check whether the functionality has been implemented correctly. The cus-
tomer defines the acceptance criteria and they are documented by customer
proxies and added to the user story in a concise way.

Developers use the acceptance criteria to build the product, and cus-
tomer proxies and the customer use them during the final accep-
tance tests. Some of the acceptance tests can even be automat-
ed, so that the acceptance criteria can be checked continuously
when changing the software. This automation can be done using tools that
allow test scenarios to be written in the language of business users and exe-
cuted via a wiki. The customer proxies and developers work together to au-
tomate the scenarios. The set of acceptance test scenarios based on a set of
user stories (features) is called a system test.

Figure 6. Reality check: the accuracy of estimates can depend on the stage of the project.

EXPLORATORY TESTING

Exploratory testing is carried out without predetermined test scenarios. It is per-
formed by the customer after each iteration. The tester gradually discovers how the
application works by trying different inputs and navigation paths. This way of testing
resembles the way an end user will interact with the application. Exploratory testing
often reveals more relevant issues than strictly adhering to defined test scenarios.

UNIT TESTING

This is an automated way to test separate functional modules or units. Unit
tests slice through the entire application, testing everything from the appli-
cation’s business logic down to the database. These tests are basically inde-
pendent of the rest of the code. If a unit is dependent on another unit, a mock
framework is used to enable proxy implementation of certain objects.

There are many benefits of writing unit tests for the code:

•	 It gives instant feedback when changes are made to the code and a
unit test breaks.

•	 It greatly reduces debugging time, because if a unit test fails,
developers know exactly where the problem lies.

•	 The cost of regression testing is significantly lower, because retesting
everything manually is not necessary when releasing a new part of
the code.

•	 There is greater confidence when deploying to production, because
there is a suite of automated tests validating the code.

INTEGRATION TESTING
Integration tests are automated tests that focus on a certain group of logi-
cally linked components. There are two types of integration tests: black box
and white box. Black box integration tests only use the interfaces of the com-
ponents to test the functionality. White box integration tests are performed in
combination with another unit or component that is closely linked, for exam-
ple a repository and its database, or a gateway and its external system. The
white box integration test can directly contact the database or the external
system for performing the necessary validations.

USER INTERFACE TESTING

User interface tests navigate through the graphical user interface (GUI) of the
application to validate the screen flow and content (not the business logic or
layout). In the case of a web-based application, these tests can be automated
using tools like Selenium.

22

23

SANITY CHECKS

Sanity checks are tests that are performed after each new installation of the
software, for every environment in which the software is installed. They are
used to test the basic operation of the integrated system (e.g. application
launch, access to external interfaces, etc.). Only when the checks are success-
ful is it worthwhile performing other tests. Sanity checks should provide in-
stant feedback to save time, so they should preferably be automated.

PERFORMANCE AND SCALABILITY TESTING

Performance and scalability tests are two types of non-functional tests.
Performance tests verify the efficient operation of the application, measuring
response times of the GUI or service. They can be automated by providing
timing information when executing integration or acceptance testing. Scal-
ability tests examine how the performance evolves with an increasing num-
ber of concurrent users. Both tests require the availability of a dedicated envi-
ronment that is representative of the subsequent production environment(s).

SECURITY TESTING

Security testing, like any other type of test, is built in in our agile process and
part of the daily work of an agile team. It is included in the task list for each
sprint to protect business from security threats without slowing down the re-
lease cycle.

While testing the functional part of a story, authentication and authorization
is also tested. Those tests can be automated.

For more specialized security testing, a security specialist from the Cegeka
Security Office helps the team in defining tests, setting up tooling and testing
the security of an application.

3.
Make it
happen

25

What do you need in order to implement
agile best practices?

It is all about people. This will be no secret to anyone who has ever been involved in software
development. Garbage in means garbage out. So for teams to perform as well-oiled machines,
they need the right people, with the right culture and tools to support them.

Here we share our experiences in:

•	 Getting the right people on board.
•	 Keeping the right people on board and helping them to develop their skills.

What do you need in order to implement
agile best practices?

3.1. �Our recruiting code to get
the right people on board

Over the last 10 years, Cegeka has come a long way in refining its agile development practices.
However, finding experienced agile developers, functional analysts and project managers for our
Agile Software Factory is far from easy.

We cannot simply ‘hire people away’ from competitors. Instead, we need to find the people with
the right attitude and coach them to become disciplined agile practitioners.

Become a
(better) agile
practitioner

Job variety thanks to different
projects in different sectors

Job autonomy and
self-managing teams

Competence centres

Growth opportunities in
technical and functional
roles, or as an agile coach

Continuous Learning
Environment

Engagement at all levels,
teamwork (also with people
from our customers)

AGILE

MAIN REASONS WHY
PEOPLE JOIN

THE CEGEKA AGILE
SOFTWARE FACTORY

 O P T I O N 1

27

3.1.1 �Evangelisation & experience

We still need to go out and do a lot of evangelisation, to tell the world about agile. Unlike 10
years ago, most people in software development know about agile project management and agile
development. However, our experience tells us that although people may know the word ‘agile’,
it does not mean that they can actually apply agile principles.

An attitude of learning

There are few people out there who are fully aligned with agile and Cegeka’s
best practices from day one. That is why we look for people with a real drive
to learn – people who are capable of questioning the status quo and devel-
oping themselves and even the methods we use. Our recruiters and hiring
managers look for people who will not just blindly follow this or that best prac-
tice, but have the capability to understand the ‘why’ of our ways of working.

From evangelism to experience
To find the right people, we evangelise at job fairs and events. We organise
Software Factory visits for candidates so that they can experience the
atmosphere, see our teams at work and talk to our people. Further along
in the recruiting process, we invite candidates to spend a half or whole day
paired with one of our team members. This allows candidates to experience
for themselves what it is like working at Cegeka. After all, people work to
satisfy both rational and emotional needs. At Cegeka, we have nothing to
hide and it is a fully transparent workplace.

Peer-to-peer recruitment

We think it is important to tap into the social networks of our people, have
them suggest good candidates and reward them if ‘their candidate’ is
hired. Of course, our people get social recognition, but they also earn a
modest referral bonus. After all, by making a referral they are putting their
reputation on the line.

Social media

The war for talent has escalated to the digital level too, so we also use
digital marketing techniques in our employer branding and recruiting ac-
tivities. We target people with a certain job type or in a certain area via
LinkedIn, or post our jobs on Twitter and Facebook via corporate accounts
and spontaneous social sharing by our employees.

3.1.2 �Graduate recruitment

Our recruiters and leadership also have good contacts at universities and colleges. They evange-
lise at job fairs and events as well as organise Software Factory visits, especially for students about
to graduate.

Young graduate intake
We have a healthy intake of new graduates. So we can ensure a healthy mix of team members –
senior, intermediate and junior profiles – and this also leads to a good market fit. Having different
skill levels is useful as not every task requires a senior team member and it would be unfair to give
a too junior team member the role of scrum master. If you do not manage your team members
wisely, things will go wrong.

PERFECT FIT

By using all these recruitment
strategies, ranging from evangelisation
to referrals, we aim to match each
candidate’s expectations with those of
our company. We strive to find the ideal
match between the job content and the
candidate’s personality and ambitions.
We have to be agile by nature – it is all
part of being a growth company.

28

29

3.2. Our culture to keep the right people on board

With an employee turnover that is 20% lower
than the sector average, we can keep the right
people on board. We believe that our agile cul-
ture is the primary driver in retaining our peo-
ple, closely followed by continuous learning
(including training) and knowledge sharing.

Learning is part of agility
Learning is an inherent part of agile practices.
Each new project is a learning experience in
how to set up teams, how to discover the busi-
ness value, how to work with the client organi-
sation, etc.

Employees are part of self-organising teams
that often work in pairs of junior and senior
people. This helps to quickly raise the skill level
of our junior employees. The teams also orga-
nise retrospectives to share learning points and
identify improvements in the way they work.

Self-development
Employees take responsibility for their personal
development. They can follow formal training
programmes externally, join internal courses,
become part of an innovation community, or
participate in guilds. Guilds are people from dif-
ferent teams with the same function who come
together to share their learning and best prac-
tices.

Twice a year, Cegeka organises a larger Know-
ledge Sharing Meeting where people from all
divisions participate. The content of the meet-
ing is developed bottom-up: people can sug-
gest topics for a presentation or workshop that
they would like to give.

A less formalised initiative are reading groups
that share the learning points of books with
new thinking about software development or
agile project management. The idea behind
this is simple: you can digest the content of one
book a month, but you only have to read and
summarise one a year.

20% of the Software Factory
employees attend competence
and innovation centres every
year

30% participate
in guilds

80% participate
in reading groups

60% attend knowledge
sharing meetings

Participation in learning initiatives

Looking over the fence

Employees are encouraged to participate in all
kinds of external user groups for certain technol-
ogies (Java, .NET, etc.) or methodologies (e.g. the
Agile Consortium).

Several times a year we also invite internationally
recognised speakers in different domains to give
presentations or workshops. We have opened
these sessions to customers and third parties.

Organisation 2.0: shared responsibilities

These initiatives are on offer, but people are still
responsible for their own growth and no one is
forced to participate. However, learning and de-
velopment are an integral part of performance
appraisal discussions. So Cegeka is an example of
an organisation 2.0: both parties, the employer
and the employee, have a responsibility to make
things work.

30

31

WWW.CEGEKA.COM

HEADQUARTERS:
Tower Center Boulevard
Ion Mihalache 15-17
Sector 1
011171 Bucharest
Romania

FOLLOW US ON

www.twitter.com/cegeka

www.linkedin.com/company/cegeka

www.facebook.com/CegekaRomania

www.cegeka.com/en/ro

ro@cegeka.com

Cegeka’s Agile Software Factory has been a leader in the field of agile software de-
velopment and business application management for complex processes for over
ten years. Cegeka currently has a team of over 700 developers. This allows us to
work efficiently, and to offer you an approach that allows you to respond quickly to
changes in or around your company.

Visit www.cegeka.com/en/ro for more information.

How can we help?
Let’s discuss; come and visit our company.

E-mail: ro@cegeka.com

